Learning to rank with document ranks and scores
نویسندگان
چکیده
The problem of ‘‘Learning to rank’’ is a popular research topic in Information Retrieval (IR) and machine learning communities. Some existing list-wise methods, such as AdaRank, directly use the IR measures as performance functions to quantify how well a ranking function can predict rankings. However, the IR measures only count for the document ranks, but do not consider how well the algorithm predicts the relevance scores of documents. These methods do not make best use of the available prior knowledge and may lead to suboptimal performance. Hence, we conduct research by combining both the document ranks and relevance scores. We propose a novel performance function that encodes the relevance scores. We also define performance functions by combining our proposed one with MAP or NDCG, respectively. The experimental results on the benchmark data collections show that our methods can significantly outperform the state-of-the-art AdaRank baselines. 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Cost-Sensitive Support Vector Ranking for Information Retrieval
In recent years, the algorithms of learning to rank have been proposed by researchers. However, in information retrieval, instances of ranks are imbalanced. After the instances of ranks are composed to pairs, the pairs of ranks are imbalanced too. In this paper, a cost-sensitive risk minimum model of pairwise learning to rank imbalanced data sets is proposed. Following this model, the algorithm...
متن کاملAutomatic pronunciation scoring using learning to rank and DP-based score segmentation
This paper proposes a novel automatic pronunciation scoring framework using learning to rank. Human scores of the utterances are treated as ranks and are used as the ranking ground truths. Scores generated from various existing scoring methods are used as the features to train the learning to rank function. The output of the function is then segmented by the proposed DP-based method and hence b...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملNovaSearch at TREC 2013 Federated Web Search Track: Experiments with rank fusion
We propose an unsupervised late-fusion approach for the results merging task, based on combining the ranks from all the search engines. Our idea is based on the known pressure for Web search engines to put the most relevant documents at the very top of their ranks and the intuition that relevance of a document should increase as it appears on more search engines [9]. We performed experiments wi...
متن کاملSoftRank: Optimising Non-Smooth Rank Metrics
We address the problem of learning large complex ranking functions. Most IR applications use evaluation metrics that depend only upon the ranks of documents. However, most ranking functions generate document scores, which are sorted to produce a ranking. Hence IR metrics are innately non-smooth with respect to the scores, due to the sort. Unfortunately, many machine learning algorithms require ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 24 شماره
صفحات -
تاریخ انتشار 2011